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Expressions have been derived in the quasiharmonic approximation for the change in nor-
mal-mode frequencies associated with thermal expansion in a nonprimitive lattice. The work
is formulated in terms of coupling parameters for an undistorted lattice with cubic anharmon-
icity. Symmetric finite-strain parameters and appropriate internal strains are introduced in
such a manner that the formulation exhibits explicitly the invariance of the crystal potential en-
ergy and normal-mode frequencies under rigid-body rotations. As a numerical application, the
coefficient of linear expansion and the phonon frequency distributions at 300 and 800 °K have
been calculated for zirconium hydride with a short-range central-force model including third-

nearest-neighbor forces.

I. INTRODUCTION

The temperature dependence of phonon frequen-
cies in a crystal can be conveniently divided into
two parts: (1) a quasiharmonic part associated
with thermal expansion, which results in a change
of interatomic distances and a corresponding
change in the harmonic force constants, and (2) a
part arising directly from terms in the potential-
energy expansion of higher order than quadratic in
powers of displacements of the atoms from their
mean positions. We shall refer to the latter con-
tribution, which is present even if the crystal is
held at constant volume, as a pure anharmonic ef-
fect. In this paper we are concerned with the ef-
fects of thermal expansion on phonon frequencies.
This problem was considered in a plausible but
nonrigorous manner by Maradudin and Fein! as
part of a study of anharmonic effects on neutron
scattering by Bravais crystals. Further justifica-
tion for their result was later provided by Maradu-
din® in a separate study also limited to Bravais
crystals, in which explicit expressions for thermal
deformations and frequency shifts in terms of force

constants were given. Neutron scattering and ther-
mal expansion in more general anharmonic crystals
have been studied by Cowley.® However, in these
treatments the introduction of finite-strain param-
eters* was carried out in an approximate manner
and internal strains (relative displacement of sub-
lattices) were not included. It turns out that it is
possible to introduce finite-strain parameters rig-
orously, so that at all stages of the calculation the
phonon frequencies are manifestly invariant under
rigid-body rotation of the crystal (in the absence of
external forces or fields). Constructing the for-
malism in this manner is not only desirable from the
standpoint of elegance but is also essential in the
event that an extension to higher orders of approxi-
mation becomes necessary - for example, over
wide temperature ranges for a strongly anharmonic
crystal.

It is the purpose of the present paper to study
thermal expansion and related phonon frequency
shifts in nonprimitive lattices, employing a rigor-
ous introduction of finite-strain parameters and
appropriate internal strains. The calculation fol-
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lows Maradudin’s work? in broad outline but in-
corporates many changes and additions associated
with the more general problems presented by non-
primitive crystals. In the special case of primitive
lattices we confirm Maradudin’s results. We use
the formalism of general lattice-dynamical theory
as found in the book by Born and Huang? and elab-
orated by Leibfried and Ludwig® for the case of
anharmonic crystals. Expressions are given for
the potential energy, phonon frequencies, and free
energy of a lattice distorted from a configuration
in which the potential energy is minimized. These
expressions involve coupling parameters defined
with respect to the undistorted lattice and param-
eters which characterize the distortion. The tem-
perature-dependent finite-strain parameters which
minimize the free energy are then expressed in
terms of the coupling parameters for the undis-
torted lattice. Although the quasiharmonic approx-
imation® is used here, a generalization to higher
orders of approximation appears straightforward.
Since long-range Coulomb effects are not consid-
ered, the application of the work is limited to non-
piezoelectric crystals.

Part of the incentive for this work has been the
desire to extend the scope of anharmonic calcula-
tions to a wider range of solids, including some
important reactor moderators. Therefore, we
have chosen as a numerical example to calculate
the thermal expansion and associated phonon fre-
quency shifts for zirconium hydride a moderator
for which a fairly elaborate harmonic central-force
model is already in existence.® Phonon frequen-
cy distributions obtained from this model and from
similar models for other moderators are used ex-
tensively in the description of neutron thermaliza-
tion in solids.” However, such models must be
parametrized to fit a set of data taken at a partic-
ular temperature (usually room temperature) and
can be used in thermalization problems at other
temperatures only under the assumption that the
frequency spectrum does not change significantly.
Since sufficient data at diverse temperatures to
check this assumption are not yet avaliable, there
is a need for theoretical work incorporating an-
harmonic effects, even on a very phenomenological
basis, to study the temperature dependence of fre-
quency distributions used in thermalization calcu-
lations. We present in Sec. V frequency distribu-
tions for zirconium hydride at 300 and 800 °K cal-
culated from an anharmonic central-force model
that predicts a coefficient of linear expansion in
satisfactory agreement with the measured value.
The temperature dependence seen in the calculated
results is large enough to show up in neutron scat-
tering experiments, though it will probably not af-
fect thermalization calculations significantly.
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These conclusions are tentative, however, since
the shifts associated with purely anharmonic effects
have not been calculated. Previous calculations®?®
indicate that their net contribution is probably
significantly smaller than the thermal-expansion
shifts.

II. EXPANSION OF POTENTIAL IN TERMS OF
DISTORTION PARAMETERS

We first expand the potential energy & of a crys-
tal in powers of displacements from the configura-
tion in which the potential energy is a minimum
(when summation indices are suppressed, summa-
tion over repeated indices is implied except when
the contex indicates otherwise):

‘I>:&)O+<Lﬁiz &)a P (llkl; "'lnkn)H €y (Ziki)'
nez 1! 1 n i f

(2.1)

In (2.1), d,is a constant term; €,(I%) denotes
the @ component of the displacement of the kth
atom in the /th unit cell from the rest position, to
be denoted below as X(I%) in the notation of Born
and Huang.! The coupling parameters (CP)

By v gy (ks o+ 21y By), are defined as

. _ " ®
q>°‘1' . an(llkly' el kn) = ( 36(11([ 1k1)~ . -aea"(l,,k,,)>0’

(2.2

where the bracket indicates that the partial deriva-
tives are to be evaluated at €,(Ik) =0. From the
condition that the potential energy is a minimum

in the undistorted lattice we have

%, (1%) =0. (2. 3)

The CP’s defined by (2. 2) are clearly invariant
under the permutation

Ly, ky—a;,1;,k; .
For definiteness we assume the crystal to contain
N unit cells (N> 1), each containing » atoms, and
we assume periodic boundary conditions. Thus in
(2. 1) and following equations a summation over [
indicates a summation over N triplets of cell in-
dices specifying the unit-cell positions. Summa-
tions over % are from 1 to », while Greek sub-
scripts are summed from 1 to 3.

Next, we consider the displacement €, (I %) to
consist of three parts, as follows:

€, (IR =25 €05 X, (LR) +d, (B) +u, (LR). (2.4

The first two terms of (2. 4) describe, respec-
tively, a homogeneous deformation of the crystal
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from the rest configuration, the parameters €.,
being constants describing the deformation, fol-
lowed by a further static displacement d,(%) of the
kth atom in each cell such that a new distorted
lattice is formed with atoms (7 %) at positions with
coordinates X .(l k) given by the expression

Xk =X (L) +2.5 €45 Xs (L R) +d,(R). (2.5)

The displacement d, (k) corresponds to a rigid
static displacement of the sublattices. Finally,
u, (1) denotes a dynamic displacement of atom (%)
from its position in the distorted lattice. (For
simplicity of notation we do not indicate the time
dependence explicitly.) Since we are interpreting
the terms X, (I%) of (2. 5) as position-vector com-
ponents describing a distorted lattice, i.e., an ar-
ray of mean positions about which the atoms exe-
cute thermal motions, it is consistent to require
the dynamic displacements to satisfy the condition

(ug(1R)) =0, (2.6)

where the brackets denote the thermodynamic ex-
pectation value. For a general operator ¢ this
expectation value in the canonical ensemble for a
system at temperature 7 with the Hamiltonian H
is given by the relation

() =Tr(e™#9)/Te(e™ ) = T (m |9 |m),

(2.7

where B=(kzT)™, kp being Boltzmann’s constant,
Z is the partition function for the system, and the
Im)’s are an arbitrary complete orthonormal set
of functions. The condition (2. 6) removes the am-
biguity otherwise present in a decomposition like
(2.4), in which except for (2. 6) an arbitrary
amount of the static displacement could be formal-
ly included in u, (1%).

To remove the formal dependence on crystal ori-
entation introduced in ® by substituting (2. 4) in
(2. 1) it is necessary to use the symmetric finite-
strain parameters 7,4 defined as follows:

naB:%(eaB*'eBa'*Zreraerﬂ)' (2. 8)

In a lattice subjected to an external strain such
that the lattice points are displaced by an amount
given by the first term on the right-hand side of

(2. 4), the separation between any two lattice points
is determined by the parameters 7,;. 4 Asanil-
lustration, we observe that a rigid rotation of the
crystal is described by a set of parameters €
such that the terms 6,5 + €,5 are the components
of an orthogonal matrix, i.e.,

ZB' (8p0 + €500) (Bgrg+ €grg) =Bgp .
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We obtain for such an €4 using (2. 8) the result
N.s=0. Thus, a rigid rotation is clearly equivalent
to vanishing strain in a formalism expressed in
terms of 7,5

Since the static and dynamic displacements rep-
resented, respectively, by d, (k) and u,(l%) are
referred to a particular orientation of the crystal,
the orientation-independent representation of a
general strain requires in conjunction with 7,4 the
use of the parameters d,(k) and 7,(l k) given as
follows*:

d (1R =dy (k) + 25 €5 ds(R), (2. 92)

Ho(LR) =uy (L) + 2 €aq g (L F). (2. 9b)

For a given €,, we have from (2. 6) the require-
ment
(u,(1R) =0.

Our goal now is to obtain an expansion for & in
powers of u,(k) of the form

(2. 9¢)

=1
<I>—_-Z ’FZQQI...Q"(Zlkl; "'lnkn)

n=0 7t

x Ha (i) + - g (I Ry), (2.10)

in which &,,..., (l&y; ++ -1, k,) is a generalized
coupling parameter pertaining to the distorted lat-
tice. By a straightforward but tedious substitution
of (2.4) in (2. 1) these parameters can be found in
terms of the distortion parameters 7,, and d, (k)
and the CP’s for the undistorted lattice. This
procedure is described and explicit expressions
for the coefficients aregiven in Gulf General Atom-
ic reports.®® These expressions are displayed
where needed in the following sections.

IIl. NORMAL-MODE FREQUENCIES IN DISTORTED
LATTICES

The basic equations of motion for an atom in the
deformed crystal are

s (3.1

mkiiu(lk) == m .

By use of (2. 8) and (2, 9b) we can rewrite these
equations as

. 0%
W(R) ==23 (8ygr +2Mger) ==—7— -  (3.2)
myu(lk) a'( aa’ +47 o, (LF)

At this point we write out explicitly the first few
terms of the expansion (2, 10) for the potential en-

ergy:
B=Bg+5 2 By (Il 'R ug(LR) 1y (1" R)



)

[ LB IR UG R) +% 2 Bpgr o (LR 1R ;1R

X g (1 R) tige (1" B Vit (1" R 4+ 1 ] (3.3

The terms in (3. 3) within the bracket vanish in
the strict harmonic approximation. Introducing
anharmonicity, for example,

By o (LR31R 1R %0,

makes ®,,.(I%;1'%’") dependent on the distortion
parameters and also introduces nonvanishing terms
into the bracket in (3. 3).° All of these terms ex-
cept the first, however, are of third or higher or-
der in the presumably small dynamic displacements
u,(l%). Hence to lowest order we can neglect the
contributions made by these terms to the depen-
dence of the potential energy on the distortion
parameters. Distortion-independent contributions
to neutron scattering from cubic and quartic terms
in (3. 3) are what we have called pure anharmonic
effects. These contributions have been studied by
Maradudin and Fein! and by Cowley.® We shall

call the approximation of neglecting all the brack-
eted terms in (3. 3) the “quasiharmonic approxi-
mation, ” in which anharmonic effects are intro-
duced through the dependence of &,,.(l%;1'%") on
the distortion parameters and anharmonic CP’s

as given below [see (3.7)].

In this section we wish to calculate normal-mode
frequencies, whichare unaffected by the addition of
a constant force like that which the linear term in
(3. 3) contributes to the equations of motion (3. 2).

oo (LR 1'R") = B ou (L3 U'R") + 20 oo LRy 1R 1 R V(') + 22
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Hence we can use the quasiharmonic approximation,
Later on, when we calculate the free energy of the
distorted crystal, we shall consider corrections
introduced by the linear term in (3. 3).

Using the permutation properties of the gener-
alized CP’s, we thus write the equations of motion
in the form

mkﬁa(l k) == Za'(éma’ + znaa')

XY By el U'R Do ('R, (3.4

By assuming running-wave solutions for 7%,(l%),

ﬁa(l k) - [ZL;‘O)(k) /(mk)-x/a] priwtrar i %) , (3‘7 5)
where x(1) denotes the position vector of the /th
unit cell, and where % " (%) is time independent,
we obtain from (3. 4) the equation

W D (R) =25 g (D40 +2Mga ) Bys g
x (e 1'R’ )ﬂ;q).(k')(mk M) M E

x expf2miq - [X(') -X(1)]}. (3.6)
The wave vector q and position vector X(I) in
(3. 5) and (3. 6) can be chosen conveniently as vec-

tors appropriate to the undistorted lattice, since
the product X(Z) - q is invariant against homoge-
neous deformations. 2

We can write the generalized CP in (3. 6) in
terms of the CP’s and lattice coordinates referred
to the undistorted lattice as follows®:

= Norepee
a’’'B

X[ Bygrar e (U3 1R 51 R Y X0 (17'R") = 8000 Bprr e (T3 1R = B B o (LR ID] . (3.7)

As a consequence of periodicity properties and
translation invariance of the lattice, the CP’s sat-
isfy the relations®
‘f’alm an(llkl; Lokgy ++ 1, kn)

=(sa1' .. a"(Okl; lz‘ ll: kz§ e ln "ll’ kn)i (3' 8a)

%éul...ai...an(llkl;--.l,ki;---l,,k,,)=0. (3. 8b)
3

Applying (3. 8) to (3.7, we can confirm directly
the result that (3. 8a) and (3. 8b) hold when
byo UR; I'R') isreplacedby &, ([ k;1'R’), which

must be the case since a distorted lattice is still
a crystal. Thus by use of property (3. 8) the I
dependence can be removed from the right-hand
side of (3.6), which is then seen to be an eigenval-
ue equation for the distorted lattice of the form
WPu(R) =2 dy o (q, kR 0Ok, (3.9
where d,,.(q, k2') denotes the dynamical matrix,
given by the expression

Ayor (@, BR') = (mpmpe ) 2 35, [ Do (Bugrr + 2Mggre)

X By o0 (OF; 1R')] 27182 (3,10)
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By substituting (3. 7) into (3. 10) and dropping
terms of higher than first order in 7,, and d,(%).
we obtain for the dynamical matrix

Aoor (@, PR") =dyor(d, kR') + 20 dibh; goepes

a’'prt
X @, kR") Ngroger + 25 A oo (&, BB ' Vd e ("),
(3.11)
where
Ao (d, kR") = (mymy )2 7, <I->M,(0k; Lk)e?rit x|
(3.12)
A, kR') = (my my )1/ 2
XY Bpr qre (O3 1R 1 B') X s (U R"")

X Q2riA ) = B0y dyge(§, kR

+0gpee d.u" m’(ay kk'), (3.13)

and
dofi)’ oz”(ay kklk“) = (mkmk'-lla Z ‘50505' at?
x (0k;1'R";1R"") it 2
(3.14)

Using (3. 12) and the rotation-invariance conditions
on the CP’s'® it can be confirmed directly that
Al g (q, kR') is symmetric in @'’ and 8’

For each value of q the eigenvalue equation (3. 9)
for the normal-mode frequencies in the distorted
lattice has 37 solutions, obtained from the secular
equation

det [| dgqor(q, BR") = 6 4qr Opee @2 ()11 =0, (3.15)

where 7 is the number of atoms per unit cell, We

denote these solutions by w%dq,7), where j=1,...,37.

Likewise the frequencies for the undistorted lattice
are solutions of the secular equation

det [l dyod, kk") = 6,4 Ome @(@)1=0,  (3.16)
which we denote by &*(q,j), j=1,...,37. To low-
est order in 7,4 and d,(7 %) it is easy to obtain by
a perturbation calculation, using (3.11), the result

wXd,7) =0%d,j) + 2 (@, k) [ X dL.peepe
o ’

o a’rpe’

XA, kk") N qooger + 20 AP

Bt
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X (q, kk'R")dye ()] 2,.(, £'5).
(3.17)

In (3.17), &,(d, %j) denotes the @ component of the
normalized eigenvector for the undistorted lattice,
which satisfies the equation

&4d,7) 20(d, B1) =2 dyor (@ k" Ve (d, k). (3.18)
The harmonic terms in (3. 13) make no contribu-
tion to the right-hand side of (3. 17), as can be
seen by use of (3.18) and the Hermiticity of the dy-
namical matrix (see below).
Thus we can reduce (3. 17) to the form

W, 1) = ©2(3,7) + 2 Nas d PG, 5) + 2 dy (DD, B),
aB

(3.19)

where

dg9(q,7) =20 8%(q, ki) 8ore(d, k'5)d e gre; 0 (G, RR")
(3. 20)

with

da' a’’; aa(ay kk') :(mk Mpe )-1/2 Z (I;a'a"a

x (OB LR ;1R ) X (1R o270 24) (3.21)

Also,

AP, ki) =25 E5(d, k') Eqn
X (ay k”j)dt(xz')a"a(a: k'k” k), (3. 22)

where d$? .. ,(d, 2’2"’ k) is given by (3.14), It fol-
lows by use of (3.18) and the a’/, 8" symmetry of
Al o peo(d, kR') that d{1XG, j) is symmetric in o, B.
By virtue of the symmetry of 1,5, anantisymmetric
part of d'}(q,7) would not in any case contribute to
the sum over a, B in (3. 19).

The dynamical matrix for the undistorted lattice

is Hermitian:
Jaa’ ((_L kk ') = ja'a(ay &'R) ’

as can be seen from the permutation and translation
invariance properties of &,,.(0%;1%’). The squared
normal-mode frequencies ®%(d,j) are thus real
(and must be positive for a stable lattice), Although
dyo(d, 22') as given by (3. 10) is not itself Her-
mitian, because of the additional matrix multiplica-



2 THERMAL EXPANSION AND PHONON FREQUENCY SHIFTS: -

tion by I +27, it can be shown® to be similar to a
Hermitian matrix so that @d,7) is also real.

We next use thermodynamic equilibrium condi-
tions to find expressions for the strains 7n,, and
static displacements Eu(k) associated with thermal
expansion,

IV. DETERMINATION OF DISTORTION PARAMETERS

For a given external strain described by the
parameters 71,, the associated internal strains
d,(k) are determined by (2. 6), the vanishing of the
average dynamic displacement. In studying the
consequences of this condition it is convenient to
work with the Helmholtz free energy F(B), where
B=(ksT)™*. [This standard notation for (k5 7)!
should not cause confusion with the use elsewhere
of the symbol B as a subscript. ] We shall later de-
termine 7,, by minimizing F(8), which is related
to the partition function Z by the equation

F(B) =(- 1/B) InZ, (4.1)

where

Z=Tr(e™®"). (4.2)

We write the Hamiltonian of the crystal in the
form

H=%,+H"+H*, (4.3)

where H ¥ denotes the quasiharmonic part of the
total Hamiltonian,

H® =T+ 10 ®o0i(lR; 'R Ha(IR) 0, (17, R,
(4.9

T, being the kinetic energy of the lattice. In (4. 3),
®, (as distinguished from &) represents the static
part of the Hamiltonian and depends (see below) on
the distortion parameters. H# includes the anhar-
monic terms in the bracket of (3.3). Since we are
dropping terms of order higher than quadratic in
u,(l k) we can write
HA=2, 8,(1R) u (1. (4.5)
Using (4. 1)-(4. 5) and (2. 7), we find by using the
cyclic invariance of the trace the formal relation!!

— oF
(L R)) :W , (4.6)

where the partial derivation is taken by holding all
distorted-lattice CP’s constant except ®,(1k). We
shall use (4. 6) below in conjunction with (2. 9c) to
relate the internal and external strains. Using
(4. 1) and (4. 3), we note that F can be divided into
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a static and a dynamic part,
F=F,+F,;, (4.7
where
Fs = ‘I’o (4-8)
and
Fy=-BInTr{exp[- B(H®"+H*)]}. (4.9)

Treating H# as a perturbation, we can make the
further decomposition

F,=F®AF, (4. 10
where®
F® = g n Tr{exp[- BH®]}
(4.11

=gt ;{ In {2 sinh[ Brw(d,4)]}.

The sum over q in (4. 11) covers values restricted
to the first Brillouin zone.

The anharmonic contribution AF can be evaluated
by a perturbation expansion using formulas given
by Leibfried and Ludwig® or, more conveniently, by
a diagrammatic analysis.* ! To lowest order,

AF is given by the expression

AF = - (2M'12’m|2 mp? B, (10) 2,0, ki) |2,

(4.12)
where éa(a, kj) denotes a component of the normal-
ized eigenvector of the distorted lattice-dynamical
matrix given by (3.11). The prime on the summa-
tion indicates that acoustic modes are omitted.

We note that since ®, and F* are independent of
3,(1%), we can write from (4, 6)
dAF

(o (LR = =557

20w - (4.13)

Condition (2. 9¢) then leads to the requirement
1

5! Z )Y
TG )

2

X 2,00, ki) 2,+(0, £')8,.(1F) =0, (4.14)

where we have used the fact for vanishing § the
eigenvectors can be taken to be real. To lowest
order in 7, and d,(#) the generalized coupling
parameter appearing in (4. 14) has the form®

B, (1R) =2, dpe(R") &, (1R 1'R")
+ 2 Ngrge 2o Doy 1'RNX (1R 1R,
a’s’ e’
(4. 15)
where
Xl 'R 1) =X ('R = Xp0(lR) . (4. 16)
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We note that when the distortion parameters van-
ish (4. 15) reduces to (2. 3). It is clear from

(3. 8a) that ®,(I %) is independent of /, although for
convenience we shall retain the formal / dependence
in our notation.,

Since &, (7%) has no terms of zero order in 7,
and d,(k), we can to lowest order replace w(0,7)
and 2,(0, k]) in (4. 14) by &(0 ,7) and 2,(0, %j), the
undistorted-lattice quantities, obtaining the result

Z Coor (R 2 (k") 800 (OR; 1 R")

1Prpte g

+ 2 Mgrgr 2a Bign(OR 1 R")

P prepte

X Xg (1B 0") ] =0, (4.17)

where

- (N L \= (s
I"am.(kkl) = (mkmk')-l/zzl ea(oy k])ear(o, k])
i

®%0,5)

(4.18)
It can be seen that I', . (k') is an effective inverse
of the singular matrix &,,.(0%; 1'%’) in the sense
that by use of (3. 18), Eq. (4. 17 can be written as

do(k) + Dy - Z Ty (kR") ;I,nansnsa wrepr(B)) =0,
* (4.19)
where
Sararipll’)= 20 Bhge(OB; 1" k") X0 (OB 1" R")
e (4. 20)

and where D, denotes the a component of a con-
stant vector independent of 2. Such a vector cor-
responds to a uniform displacement of the crystal,
which cannot affect its physical properties. More
formally, by use of (3.8b) it can be confirmed that
D, makes no contribution to any of the expressions
we have derived and can therefore be set equal to
zero. We thus obtain from (4. 19) the following re-
lation between d, (%) and the external strains:

do(B) = 20 Nyrgr Gurg o(B), (4.21)
a’B’

where
CorgralB) =2 Togri(ll") Syrigeg ("),

In some of the manipulations later on we shall use
the symmetry property

Tuo(BR') =T . (R'F).

Substituting (4. 21) in (4. 15) leads by the use of
various properties of the CP’s to the result

a,(1%) =0,

which is thus seen to be necessary as well as suf-
ficient for the satisfaction of (4. 14). It should be

(4.22)

(4.23)

(4. 24)

stressed, however, that (4.24) depends upon our
approximation of dropping terms of third and higher
order #,(I%) in H#, For example, had we retained
the term cubic in #,(1 %) in H*, a contribution to
AF linear in &,(lk) would have appeared in (4. 12),
giving rise to a temperature-dependent but 7-inde-
pent additional term in (4. 21) which in turn gives
rise to a temperature-dependent nonzero value for
p,(1k). Clearly, such a term is not associated
with thermal expansion, but represents instead a
higher-order anharmonic effect in which the ther-
mal motion of the atoms slightly displaces their
mean position from rest positions at which the net
force vanishes. Although this displacement is re-
quired to vanish by symmetry in the large class of
parameter-free crystals, for which (4. 24) holds to
all orders, in general (4. 24) is only an approxi-
mate result. We mention this point to emphasize
that our results apply to all crystals in the order
of approximation we are using and are not restricted
to parameter-free crystals. As a consequence of
(4. 24) we obtain from (4. 12) the further approxi-
mate results

AF=0 (4. 25)
and, from (4.7), (4.8), and (4. 10),
F=&,+F%", (4. 26)

We now wish to express the right-hand side of
(4. 26) in terms of d,(k) and 7,4 and then substitute
(4. 21) and minimize with respect to 7,5 . In terms
of undistorted-lattice CP’s and coordinates the
static term is found ° to have the form

@0_¢D+ZZ (Ul 'R dy(R) d (R

+ 25 A (R Ngrg s 0 By or(Tl; 1) X (1" R)
5

1

AR VRN X, R X0 (LR,
(4.27)

Since the last two terms in (4. 27) contain terms
linear and quadratic in X,(7%), it might be supposed
that the surface of the crystal, where these coor-
dinates are large, makes a substantial contribution
to the summations. Such a surface dependence
would be undesirable for many reasons, including
the possibility that large coefficients would spoil
the approximation of keeping only terms of lowest
order in the strain parameters, and also because
the useful condition (3. 13a), which holds in the
volume of the crystal, breaks down near the sur-
face. It is possible, however, to write (4.27) in a
surface-independent form by use of (3. 8b), which
depends only on invariance of the potential energy
and its derivatives to over-all translation of the
crystal and does not involve periodicity. Thus in

+32 Waana'a'z Byq
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the third term of (4. 27) we can make the replace-
ment

Xp(l'R) =X ('R 1R). (4. 28)

The last term of (4.28) can also be shown to de-
pend only on the difference between position vectors
by following a procedure given by Leibfried and
Ludwig® and applied by Maradudin?® to the primitive
lattice case. The generalization to nonprimitive
lattices involves a coefficient éasa. g defined as
follows:

A 1
CuBa'B' :_E l%k;' éaB(Ok; l,k,)XB:

X (LR 00) X o, (15 OF), (4. 29)

where 7 denotes the volume of a unit cell in the un-
distorted lattice. Since terms in (4. 29) with large
position-vector differences have small CP’s,
Coporge is not sensitive to surface terms.

It can be shown® that the expression (4. 27) for &,
can be rewritten in the form

Bo=Bgr s 2 By Uk I'R") d(B) d o (R)
124

2 d ()N e 2 By (LR 1R )X (115 )

+%N1~)Zna8 Natp éaBa'B’ ’ (4. 30)

where

-~ ~ A A
Cosarp =Courpp +Caprarp = Capag’ (4.31)

In this formulation the sensitivity to surface terms
has been eliminated.

Returning to the quasiharmonic part of the free
energy, we note that to lowest order in the distor-
tion parameters we can write

F® = F* 0 FopNas + 2o Fo(R) d (B, (4.32)
aB ak
where from (4. 11)
F'=p1Y In {2 sinh [P”—G’é‘hﬂ]} , (4.33)
1.

Fop= {ann } =§ _). coth [ﬁﬁw(q’j)] [8w(q’j) ] )
0 0

anaB 4,4 2 anﬂtﬂ
(4. 34)
B R ﬁm(a,j)] [w(&,j) J
Folh) '{aﬁa(k)}o“ 2 & COth[ PR | M R
(4. 35)

In (4. 34) and (4. 35) the partial derivatives are de-
fined to be taken with all other parameters de-
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scribing the distortion held constant and evaluated
with all the distortion parameters set equal to
zero,

By using (3. 19) to evaluate the partial deriva-
tives, we obtain the expressions

Fop= e[ij(a,j, £)dR(d,4), (4. 36)

F (P = 32 £(q,4,8)d?@Q, ki), (4. 37)

¥
where d'}(d,7) and d\?’(q, kj) are given, respec-
tively, by (3.20) and (3. 22). and where

£(@,7,6)=1[40(d,7)] tcoth[ 3p7®(J,5)]. (4. 39)

The contribution to the sums in (4. 36) and (4. 37)
from d and 7 corresponding to acoustic modes
[#(0,7)=0] is nondivergent, since when (3. 20) and
(3. 22) are substituted, the summation over %’ and
k'" vanishes by virtue of (3. 8b) and the fact that
the eigenvectors weighted by m2;!/2 corresponding
to these modes are independent of %.

We now wish to eliminate d, (k) from our expres-
sions for &; and F® by substitution of (4. 21),

After some algebra we obtain
q)(): ‘50“(” %Nv— Z Nas na’ﬂ'caBa’B' ’ (4' 39)

where

S| =

Copars =Caparpr == 2 PapardF)Sqregear(k’) .
WrTh

(4. 40)

It can easily be shown that (4. 40) is identical to the
expression for the elastic constants of nonionic
crystals in the harmonic approximation derived by
Born and Huang using the method of long waves. *

Finally, we write from (4.21), (4. 32), and (4. 39)
the result

F'—"@oi-%N?jZ naB”a‘B'CaBa’B' +Fh

+ZF&B77&B +Z Fa'(kl)znaﬂqpaﬂu‘(k)' (4'41)
aB aB
By imposing the equilibrium condition
dF/dn,;=0, (4. 42)

we obtain the result

N 2 NarpCaparsr+ Fop+ 2o For (') @uper (k') =0.

o’B’
(4. 43)
A formal solution to (4. 43) is
Nag == (NZ-}) - Z C;lﬁa'ﬁ'
a’p
X [Forpr +25 Fopri(B")Ppopr oo (B) ] , (4. 44)

where Cisqp is the tensor inverse to Cygqep in
the sense
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Z C;lBa"B"Ca"B"a'B’ = 6v:u:t' 636’ .
a’’g’

The Cjh4:4’s are the elastic compliances, writ-
ten as components of a fourth-rank tensor. Sub-
stitution of (4. 44) into (4. 21) gives d,(k) for a
thermally expanding lattice. The phonon frequen-
cies as a function of temperature are obtained by
substituting these results in (3.19), completing the
formal solution of the problem. We note that
d,(k),n,5, and consequently the shift in phonon
frequencies vanish as expected when the anharmon-
ic CP’s are zero. For the case of a primitive lat-
tice our results reduce to the equations given by
Maradudin, 2 who applied his expressions to cen-
tral-force models for cubic Bravais crystals. An
application of our more general results to a non-
primitive lattice is presented in Sec. V.

(4. 45)

V. APPLICATION TO CENTRAL-FORCE MODEL FOR
ZIRCONIUM HYDRIDE

The application of the preceding formal results
to zirconium hydride provides an illustration of
some practical interest, since phonon frequency
distributions for this substance are required over
a wide range of temperatures for use in describing
its properties as a reactor moderator. It is pos-
sible to carry out a rather detailed calculation by
using a computer code based on a harmonic central-
force model for zirconium hydride ¢! to provide
the eigenvectors and normal-mode frequencies for
the undistorted lattice. In this model, ZrH, is as-
sumed to have the parameter-free CaF, (fluorite)
structure, consisting of a face-centered cubic lat-
tice of zirconium atoms interpenetrated by a simple
cubic lattice of hydrogen atoms spaced at a distance
equal to one-half the dimension of the zirconium
cube. ® Thus the Zr atoms occupy sites of 0O,
symmetry, while the H atoms occupy sites of T,
symmetry. This symmetry leads to considerable
simplificati~n in the calculation of the elastic con-
stants and the distortion parameters. For example,
the following relation holds for the quantity de-
fined by (4. 20):

Samlﬁl(k) =0

for all % if any two subscripts are equal. As a con-
sequence of (5. 1) we obtain from (4. 22) the result

GprpalP) =0,if a'=p", (5.2)
Together with (4. 40), Eqgs. (5. 1) and (5. 2) imply

(5.1)

Caﬂa.5.=6a5a,3,, if a=p and/or a'=p". (5,3)

Further consequences of the lattice symmetry are
the vanishing of F,(#) [(4.35)],

F.(k) =0,
and the isotropy of F,,[(4.34)],

(5. 4)
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Foug=04F, (5. 5)
where F is defined by this equation. From (4. 36)
and (5. 5) we can write

F=2, /G.3,8) F@,3), (5.6)

7
where
F@,)=5 2 2%, k)2,
RR' aa’a’’
X (ayklj)daa';a"a"<a,kk,)- (5. 7)

The results (5. 1), (5.4), and (5. 5) can be proved

in a straightforward fashion by using the transform-
ation properties of the CP’s, eigenvectors, and
lattice coordinates as given, for example, by Mar-
adudin and Vosko. * We omit the detailed proof

here.
Central-force-model expressions for the first-

and second-order CP’s are given by Born and
Huang.!® For the third-order CP’s we obtain

8ot (OF; 1R 1" R"") =4(80;0 Oppe — Bgpre Oprger)
X { =2X, X oo X s U3 = (8400 X oo + 8y grr X oo

(
+60¢'(¥“X0t) ‘Ilklzgll})?”'kll:lku) (5. 82,)

(the case I'=1""=0, k=k'=k"" excluded) and

By g (000, kEE) =4 25 {2X X X 00 U3,

e
(2);
+(6aa:Xau + GaauXa, + Ga'ot“Xnt) \Ilkk }i (Ok31°R") *

(5. 8b)

In these equations §,, stands for the product 6y,
Oo1, 60,2, where /,,7,, and /, are the cell indices
of the /th unit cell.

In (5. 8) the potential energy ¥,, between two par-
ticles of types % and %’ is regarded as a function of
the square of the distance and ¥} denotes the nth
derivative taken with respect to the squared dis-
tance. The subscripts on the curly brackets indi-
cate the arguments of the enclosed functions. The
formal provision is made that ¥,,. and its deriva-
tives vanish for zero value of the argement,

The condition that the lattice be in a configuration
corresponding to vanishing stress imposes the re-
quirement!?

WZ’;I &KX TR T 7 0r5 180) =0 (5.9

Then the C,z45 contribution to the elastic constants
in the harmonic approximation can be written as
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follows:

Copor =

py

lg, {X X s X oo Xgr U 20k ey - (5. 10)

F@,j) =% 2 {2,293..[8(, 2% X8, #i)* - X] +

lhk'R"*

+2Re\If,§.2;“ [E(a, kl]) . 52] [é’(fi, Bi)*. il}iﬁ(oy'; ' [Gkk' - 5k"kema.i(” 1,

where in terms of the eigenvectors defined by(3, 23)
ea(q, ki) =(m,) 2 2,(G, kj) (5.12)

and 72=X . X. The dependence of F(d,7) on § is
such that the summation over g in (5. 6) can be re-
stricted to the irreducible element of the first
Brillouin zone, with appropriate weighting for
boundary points. 2

From (4. 44), using (5.4) and (5. 5), we now ob-
tain for the distortion parameters the expression

Nas== (F/V) 22 Colar
al
== (F/VC3li1+ Colyaa+ Cias] s

== éaB (F/V-)[CHII + 20;}.22] = GaB T](T) ’ (5' 13)

where V denotes the volume of the undistorted
crystal and where the final equation defines n(7).
We have used the fact that the elastic compliances
have the same symmetry properties as the elastic
constants. On switching to the Voigt notation* and
noting the relations!®

-1 Cui+Cys
= 5. 14a
Cu (Cn + 2012)(011 - C12) ’ ( )
-C
cil= Z12 (5. 14b)
12 v(C11+ 2Cyp) Cyy— sz) ’
we can write
nWT)=-(1/3V)F/B, (5.15)

where B is the bulk modulus, given in the harmon-
ic approximation by

B:—%(Cll-cmlz):%;‘(6114-2612). (5. 16)

We have used (5. 3) to write B in terms of the
Cosarp’s. The diagonality of 7, gives immediately
by (4.21) and (5. 2) the result that d,(k) vanishes.

We can use (5. 13) and the fact that volume-ex-
pansion ratio is given by [det(1+27,5)]%/2 to ob-
tain an expression for the coefficient of linear ex-
pansion A:

-1 (3 - 1 _a 3/2
A_3V(8T>P =3 2n)E ar (12
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To obtain the central-force-model expression
for F(q,j) we substitute (5. 8) in (3, 19) and use
(5.7) to obtain after some manipulation the result

7’2 ‘Illfe?;e”[g(q, k’]) * E(ay k])*]

(5. 11)

L odn __ psp -1
“Tyon ar =—F'[3VB(1+2n)],

(5.17)

where V is the volume of the distorted crystal and

/s df@,j,B)
Fl= L0

F(q,5)

2 . R
g £ s (3ne@, ) FE,S), (5,10

as follows from differentiating (4. 38).

Finally, noting (5.3), (5.7), and (5. 13), we can
obtain from (3. 19) an expression for the square of
the distorted-lattice phonon frequencies in the fol-
lowing simple form:

wi(q,7) = @@, §) + 3n(T)F(G, ).

As mentioned above, the undistorted-lattice
eigenvalues and eigenvectors @(g,j) and &(J, %j)
are obtainable from a previously developed harmon-
ic central-force model.® Four “force constants”
appear in this model, denoted by u,y, v, and & and
defined as follows (where a denotes the fcc lattice
constant):

(5. 19)

p=a?¥Z (r?, r=1v3a (5.202)
y =a? UE(r?), r=3V2a (5. 20b)
v=a? ¥ (?), r-ia ' (5. 20¢)
6=c? ¥ (r?), r=1V2a. (5. 20d)

In (5. 20a), for example, ¥Z) (»2) denotes the value
of the second derivative with respect to the square
of the distance of the central-force potential be-
tween a zirconium atom and a nearest-neighbor hy-
drogen atom at a distance §v3a. Each Zr atom has
eight nearest-neighbor H atoms at a distance $v3a
and twelve next-nearest-neighbor Zr atoms at a
distance 3 V2a, for which y is the appropriate force
constant. Each H atom has six next-nearest-neigh-
bor H atoms at a distance 3 v2a, for which v and &
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are, respectively, the appropriate force constants.

If we label the Zr atom and the two H atoms in a
unit cell by k=1, 2, 3, respectively, we can write
in the notation of (5, 8)

TB(r2) =w(r?) = p/a®, r=4V3a
r=3v2a

UB(y2) =y /a?, (5. 21)

U2 (r?) =02(r2) =6/a?, r=%V2a.

At distances greater than 3 v2a all interatomic
forces are assumed negligible.

The following force constants were found® to
give a phonon frequency distribution in agreement
with neutron scattering and specific-heat data:

p=0.49x10° g/sec?,
y=0.14%x10° g/sec?,
v=0.6x10* g/sec?

5=0.15%10* g/sec?.

(5. 22)

The first derivatives ¥, were chosen to vanish:

vi(»2)=0 (5. 23)

GG, 7) =2 2o (&, ky 7)) dyer @, kR V20 (d, k")

=4 2 {¥ELE@, ) - XI[E @, k) -

1RR' R

)

when 7 has the values indicated in (5. 21), thus
guaranteeing the satisfaction of (5.9). [Equation

(2. 3) is satisfied identically by virtue of the lattice
symmetry regardless of the choice for ¥iL).. ]

Then by using (5. 10) and noting that 7 = 3a° for a fcc
lattice we obtain from (5. 16) and previous equations
the result

B=(4/3a)(2y +46+3 n+35v).

Choosing a=4.79 A and using the values (5. 22),
we obtain

B=0.1541x10'® dyn/cm?
=2.235%107 1b/in. 4,

which is the expected order of magnitude.

Next we can select a set of values for the third-
derivative force constants ¥{%. and test our choice
by comparing with experiment the linear-expansion
coefficient calculated from (5. 17). A special choice
for these force constants greatly simplifies the cal-
culation of F(q,j). We first observe, using (3. 18)
and orthonormality of the eigenvectors, that the
harmonic-model normal-mode frequencies can be

written as

(5.24)

X1}z orsiprey + [Oppr = B €27 )‘((z)], (5.25)

where the second expression is obtained by using central-force-model expressions for the CP in (3.12).
Substituting (5. 25) in (5.11) and using the fact that ®%(, j) is real, we can write

F(d,j) =% 2 {er?u,[8@ %" - XIE@, £5)* X]+ 22, (8@, £"9)- G, &) ™1} con 1as

lkk'R"’

. [5k'k" — By ezna-}?m] +§°32(a,j)-

(5. 26)

If we choose the third-derivative force constants so that

{72‘1’;(2'3;})‘(’ (0k; 1R) =A{‘I’;§'2r)e}i’ (0%; IR*) »

(5.27)

where A is a dimensionless proportionality constant, we than arrive at the result

F@Q,j) =5 2 AP g (8@, 275 8@, D% ]+ [0 = o™ T ] L 24 4 1) 073, 7)

kR R

<4 T {r U@z op ey 8(d, 2'9) | 2= 8(d, ki) 8(d, &7)* 28 XM L 24 + 1) 9%, ) (5.28)

LkE!

by use of (5.25). The summation over 7, 2, and B

can be carried out explicitly and a somewhat lengthy
expression obtained for F(q,j) in terms of the force

r

constants (5. 21), but (5. 28) is already in a conven-
ient form for evaluation by computer.
We can now select a trial value for A and perform
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a calculation of the coefficient of linear expansion.

A crude means of making a first guess for A is to
assume a simple Lennard-Jones form for the central
force interatomic potential; for example, we assume
for the potential the form

U(y) =cy®-by3,

where y =72, at values of 7 in the neighborhood of
an equilibrium separation distance 7 in the undis-
torted lattice. Then the condition

‘I’(l) (5-}) = o’

(5. 29)

where 7 =72, enables us to eliminate ¢ from (5. 29),
thereby obtaining

¥(y) =b( 7%y - y™).
Using (5. 30), we find that
7},.'2‘1,(3)(7,2) - 12\1,(2)(72)’

(5. 30)

which according to (5. 27) suggests the choice
A=-12.0.

A calculation of X for A =~ 12, 0 using 520 values
for q in the irreducible element leads to the values

A=1.125%x107%/°K at T=300°K

1=2.28%X10"%/°K at T=800°K.

The most nearly comparable experimental measure-
ments appear to have been made by Kempter, El-
liott, and Geschneider!” for ZrH, ¢ in the slightly
tetragonal € phase. For randomly oriented poly-
crystalline material between 24 and 300 °C they ob-
served an average linear expansion coefficient of
0.93x%107%/°K, which with our calculated value is

in qualitative agreement. By varying the value of

A within reasonable limits we could obtain an exact
fit to an observed value for a at a given temperature
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if such data were available. (As an example of de-
pendence of X on A, we note that a calculation with
A=-10.0 gave a value of 0.86x107°/°K for x at T
=300°K.) For A=- 12,0 the calculated value for
the distortion parameter 7 is 0.01956 at 7'=300 °K
and 0.02912 at 800 °K. The shifted phonon frequen-
cies can then be obtained from (5.19). Table I
gives a few examples of calculated values for G)(a, 7)
and w(q,j) at 300 °K (see Fig. 1).

Figure 1 shows phonon frequency distributions
for ZrH, based on 520 q-point (4680 frequencies)
calculations at 300 and 800 °K. A shift to lower
frequencies is apparent at the higher temperature,
the central frequency of the optical part being de-
creased by about 15%. (The distribution at 300 °K
calculated here is not in agreement with neutron
data, since we have not reevaluated the harmonic
force constants to fit the data in the presence of an-
harmonicity. The frequency shifts introduced by
the anharmonicity displace the optical peak shown
here from its observed position centered around
0.14eV. We have not adjusted the force constants
to restore agreement, since our purpose here isto
illustrate the effects of thermal expansion rather
than prov.de accurate phenomenological fits.) The
amplitude-weighted distributions used in neutron
scattering calculations® have not been calculated
but are expected to be shifted by about the same
amount. Of course, these shifts do not give a com-
plete specification of the lowest-order effects of an-
harmonicity on neutron scattering, since we have
not included purely anharmonic phonon frequency
shifts of the type calculated by Maradudin and Fein!
and Cowley®. The purely anharmonic shifts re-
ported in those references are somewhat smaller
than the thermal-expansion shifts but of the same
order of magnitude. The third-and fourth-order
shifts are of opposite sign, the third-order shift

T 1 T 1 1 T T T T T T T T
— T=300°K
60} --- T=800°K .
A=-12.0
P— -
= a0l .
3 ™
< L
|
|
20} r —
| |
oo
|
o 1 1 | 1 1 1 1

FIG. 1. Phonon
frequency distributions
for ZrH, at 300 °K and
800 °K.
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TABLE I. ZrH, shifted and unshifted phonon frequencies and values of F(§,j) calculated at 7=300 °K for A=-12.0.
=00, 0, 0)a!
5(?1,]’) (eV) 0.1375 0.1375 0.1375 0.1139 0.1139 0.1139 0.0 0.0 0.0
F(g,7) (eV)? =-0.1198 —0.1198 —0.1198 —0.08215 —0.08215 —0.08215 0.0 0.0 0.0
w(q, j) (eV) 0.1090 0.1090 0.1090 0.090 29 0.090 29 0.090 29 0.0 0.0 0.0
=6, 3 hat
Z)(a, 7 (eV) 0.1486 0.1375 0.1363 0.1363 0.1248 0.1248 0.02612 0.01325 0.01325
F(3, 7 (evV)? -0.1423 -0,1221 -0.1165 -0.1165 -0.09762 —0.09762 —0.00445 —0.00083 —0.00083
w(q, j) (V) 0.1172 0.1084 0.1083 0.1083 0.099 28 0.09928 0.02052 0.011 29 0.011 29
4=, 0, 0)a?
;('&, M V) 0.1585 0.1489 0.1489 0.1375 0.1257 0.1257 0.03025 0.020 81 0.02081
F(g, j) (eV) -0.1653 —-0.1418 -0.1418 -0.1177 —0.09696 —0.09696 —-0.00601 —0.00232 —0.04232
w(g, j) (eV) 0.1242 0.1177  0.1177 0.1096 0.1006 0.1006 0.02372  0.01723  0.01723
having the same sign as the thermal-expansion shift, tering calculations.
so that there is a partial cancellation of the purely
ACKNOWLEDGMENT

anharmonic shifts, Thus a thermal-expansion cal-
culation like that which we have performed for
ZrH, probably gives a good estimate of the over-all
magnitude of the temperature dependence of the
phonon frequencies as they appear in neutron scat-
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